
JOURNAL OF COhWUTATIONAL PHYSICS 8, 83-105 (1971)

The Solution of Partial Differential Equations

Using a Symbolic Style of Algol

K. V. ROBERTS

Culham Laboratory, Abingdon, Berkshire, England

AND

J. P. BORIS

U. S. Naval Research Laboratory, Washington D. C.

Received October 27, 1910

A large class of physical problems reduces to the solution of nonlinear sets of partial
differential equations. The success of mathematical physics in such problems depends
closely on the available mathematical notation, which is both elegant and precise.
Even so, certain information can only be obtained from numerical computations using
finite-difference methods on discrete spatial and temporal grids. Existing computers are
already powerful enough to handle many interesting problems in two and three dimen-
sions, and the main limiting factor is now the time taken to develop the necessary
programs. In this paper a symbolic styIe of writing AlgoI is developed using three-
dimensional magnetohydrodynamics as an example. Programs written in this way are
clear and concise and can be written and modified quickly with little chance for error;
they can also be converted easily for use with any computer system. Thus the develop-
ment of a working computational physics program need not take man-years of high-
level scientific effort. The symbolic style of programming developed here overcomes the
usual objections to large Fortran programs by introducing an operator formalism
which is very close to the formalism developed for mathematical physics. One defines
a set of difference operators which “look” and “feel” just like their differential counter-
parts and thus the details of the finite-difference scheme can be largely hidden from
view. Although the Symbolic Algol ‘prototype’ codes developed in this way execute too
slowly for full three-dimensional production runs, the inner loops can readily be con-
verted, either automatically or by hand, into highly optimized versions in any chosen
language.

1. INTRODUCTION

This paper describes a symbolic programming technique, based on the Algal 60
language, which can be used for the rapid production of computational physics
programs. So far it has mainly been applied to the solution of sets of coupled

83

84 ROBERTS AND BORIS

nonlinear partial differential equations, using finite difference methods on a
discrete space-time mesh, but the technique appears to have other applications
which lie outside physics, since it could also be used for constructing many different
kinds of computer software. The programs are constructed in modular form;
they are portable (i.e., they can be quickly adapted to any computer system for
which an Algol 60 compiler is available); they are readily intelligible to theoretical
and experimental physicists and easily updated; and they can be made as efficient
as required.

Mathematical Symbolism

The successes of mathematics can be linked quite closely to the development of a
widely accepted notation which is elegant, compact, and precise. In mathematical
physics, for example, a vector-valued function can be represented by a single
symbol, independent of the coordinates, with both the indexes and the functional
dependence suppressed. A theoretician does not write

(BX(IX, IY, IZ), BY(IX, IY, IZ), BZ(IX, IY, IZ)) (1)

as in Fortran but simply uses B instead. A symbolic vector-analytic expression
such as

VxVxB (2)

can be used for problems in one, two, or three dimensions and for any type of
coordinate system, whether it is, rectangular, cylindrical, spherical, generalized
orthogonal curvilinear, or whatever.

Fortran Difference Notation

It would seem that comparable successes for computational physics must
await the development of an equally lucid, equally powerful symbolic method
for programming problems directly. The extent of the difficulty may be gauged
from the fact that a simple expression such as (2) can expand by nearly a factor 100
when converted to a three-dimensional difference form which is compatible with
standard implementations of Fortran. Although the translation of ordinary
mathematical notation into executable program statements ought surely to be a
purely mechanical process, this is not yet the case in practice; the development and
testing of a valid and useful scientific program often occupies several man-years
of high-level scientific and mathematical effort. Furthermore the resulting code is
usually bulky and hard to understand, so that it is difficult to modify the program
or even to be quite sure that it is correct.

SYMBOLIC ALGOL 85

Symbolic Algal I

The sought-after simplicity, clarity and preciseness of mathemaucal physics can
be reproduced almost exactly by programming in a symbolic style of Algol which
is equally intelligible to compilers, numerical analysts and theoretical physicists
alike. For example, the vector magnetic field equation

8B - = v x (V x B) + qV2B, at

where r is the scalar resistivity and V is the velocity of the fluid medium in which
the vector magnetic field B is embedded, can be integrated in difference form in
Algol as

NEW B: = B + DT x (CURL(CROSS(V, B)) + ETA x DELSQ(3)); (4)

Here the physical quantities V, B and the analytic or algebraic operators CURL,
CROSS, DELSQ are real procedures whose structure will be explained in Sections 4
and 5, while NEW B, DT, and ETA are real variables. Like Eq. (3) the Mgol
statement (4) is independent of the coordinate system and of the number of
dimensions, and the actual choice is made by changing the definition of lower-level
procedures, or the values of certain ‘hidden’ global constants. Statement (4) is also
independent of the particular difference schemes used.

Privileged Variables

This style of Algol programming,l which will be called Symbolic Algol I to
distinguish it from a second style to be mentioned later, relies on the use of
privileged variables such as V and B in statement (4). A privileged variable is in
fact a parameterless typed procedure (‘function’ in Fortran parlance), whose
value, when invoked, is determined by the current state of variables which are
declared to be global in scope to the actual procedure declarations and are therefore
hidden from view. Thus the magnetic field B is represented by

real procedure B; B: = AB[Cl, Q]; m

where AB is an array which stores the actual values, Cl is an integer specifying the
component value (1,2 or 3), while Q is an integer which labels the position on
the mesh. Procedures such as CROSS, CURL, DELSQ manipulate the values of
the hidden variables Cl and Q, so extracting the array values needed in the differ-
ence scheme.2

1 Some of the ideas can be traced to earlier work by Dr. N. K. Winsor at Princeton.
2 In the more general case of a tensor, Cl will signify the i%st component. Q has been chosen

as a relatively rarely used letter, not too dissimilar to 0 (local origin).

86 ROBERTS AND BORIS

Privileged variables have other applications. In mathematical physics, for
example, the same notation is normally used for the resistivity v whether it is a
constant, or a function which depends on the coordinates x, y, z, or the physical
variables B, p, T, (where p is the density and T the temperature). Correspondingly
in Symbolic Algol we might write

real procedure ETA; ETA: = CONSTANT x TEM t 1.5, (6)

where TEM is itself a privileged variable which describes the temperature.

Control Phrases

There is another use for parameterless typed procedures which is important in
establishing an intelligible structure for the program. When using the leapfrog
scheme, for example, in which alternate points of the mesh are calculated at each
timestep, we can write

if THIS POINT IS EVEN then INVOKE DIFFERENCE EQUATIONS; (7)

Here THIS POINT IS EVEN is a Boolean procedure which is defined by Boolean
procedure THIS POINT IS EVEN;

THISPOINTISEVEN: =I+J+K+N=2 x((I+J+K+N),2); (8)

where I, J, K, N are the integral coordinates of points on the space-time mesh.
INVOKE DIFFERENCE EQUATIONS is a procedure which performs the
required action (see Appendix). Other typical control phrases are:

TWO DIMENSIONS

PERIODIC X;

RIGID Y;

LAX WENDROFF SCHEME;

(9)

All these procedures set hidden ‘switches’ which determine the type of problem to
be solved, or the difference scheme to be used. Three features of Algol make this
use of control phrases feasible; the ability to have functions with no parameters
(which are not allowed in standard Fortran), the absence of any real restriction on
the length of identifiers, and the omission of the unnecessary word ‘CALL.’

SYMBOLIC ALGOL 87

In Fortran the set of phrases (9) would have to be replaced by something like

CALL TWODIM

CALL PRDICX

CALL RIGIDY

CALL LAXWEN

which is much less satisfactory.

Modular Structure

In mathematical physics, the same formalism can often be used to solve a wide
range of problems; for example vector algebra and vector analysis, matrix algebra
and Hamiltonian dynamics are all used in this general way. A similar generality
applies to Symbolic Algal, because the procedures which implement DOT, CROSS,
GRAD, CURL and other operators are largely problem-independent, so that
they can be coded and tested once-for-all and then stored in a random-access
file in a convenient modular form, for use by any programmer.

Once this principle has been recognized, it is natural to look for other sections
of a typical physics program which can be prefabricated and “packaged” in this
way. The development of a universal set of Symbolic Algol modules for solving
general time-dependent problems involving partial differential equations has been
initiated at the Culham Laboratory by R. S. Peckover and one of the authors
(K’VR) and this work will be reported elsewhere [l]. It has been found that virtually
the whole program can be built up from prefabricated symbolic modules, includes
both the physics and the organizational sections.

Portability

Algol is a universal language except for two features; the hardware representation
and the input-output procedures. The former need present no real problem because
Peckover has shown that in most cases the conversion from one hardware repre-
sentation to another can be carried out automatically using a context editor. In the
scheme developed by Peckover and Roberts [l], all the output is channelled through
one small module (OUTALGOL), containing less than 20 cards, which is simply
replaced by an alternate version in switching to a different computer system.

The same Symbolic Algol modules have currently been used with 10 different
Algol60 or Algol W compilers, seven different types of computer system including
the IBM 360, ICL 1900 and CDC 6600, and six different on-line systems of which
three were commercial computer utilities. This suggests that it should be possible
to set up ‘universal’ suites of modules for computational physics, comparable to
the standard notations used in mathematical physics.

88 ROBERTS AND BORIS

Testing and Optimization

Although Symbolic Algol 1 enables programs to be developed and tested very
quickly, these programs execute quite slowly because of the large number of
nested procedure calls involved; typically 30-100 times more slowly than optimized
Fortran. Several methods have been used successfully to overcome this problem.

All the methods depend on the obvious fact that different sections of the program
are executed with widely different frequencies. Consider for example a three-
dimensional production run, using a 64 x 64 x 64 mesh and computing for 256
timesteps, or 226 space-time steps in all. While the main difference equations will
be executed 226 times, some of the more complex logical statements in the initial-
ization procedures will be executed only once, while (hopefully) those in failure
procedures will be executed less than once on average. In optimizing the final
version for production runs it is only necessary to recode those sections which are
executed more than (say) 218 times, and these usually form only a small proportion
of the total program.

We have found it practicable to test a program with a comparatively small
number of time steps using a coarse mesh; say 8 x 8 x 8 for eight timesteps,
or 212 in all. Then the slow speed of Symbolic Algol I is quite immaterial. In fact
because all the space-time steps are essentially the same, many programming
errors can be found by checking the results of a single space-time step, and this
can readily be done on-line [l].

Once the program has been checked out in Symbolic Algol I, a detailed series
of trial runs can be carried out, again using a relatively coarse mesh. The sections
which have high execution frequency are then recoded in optimized Algol, Fortran
or assembly language, and the trial runs repeated, when any coding errors should
produce a discrepancy in the results. Once the optimized version has been verified,
the number of mesh points can be increased and production runs made.

Symbolic Algol II

Although this optimization procedure is not difficult to carry out by hand,
it is a purely mechanical process and therefore capable of being automated. A minor
transformation of statement (4) (which can itself be carried out automatically),
will convert it into the equivalent Algol statement

EQUATE(B, SUM(B, MULT(DT, SUM(CURL(CROSS(V, B)),

MULT(ETA, DELSQ(B)))))); (11)

where EQUATE is a procedure, and all the other identifiers represent typed
procedures. These can be defined in such a way that they calculate and then print
or punch the symbols needed to implement the optimized version in any desired
language. This technique, to be referred to as Symbolic Algol II, was suggested

SYMBOLIC ALGOL 89

by the authors [2,3] and has been implemented by Dr. M. Petravic and Dr. G.
Kuo-Petravic [4, 51 who have generated optimized Fortran, Algol, ICL K
Usercode and IBM 360 assembly language. The latter two versions seem to be
about as fast as a good Fortran compiler and a good Fortran programmer could
jointly produce. Symbolic Algol II will be briefly discussed in Section 6.

2. A MODEL PROBLEM

To make the discussion more concrete, Symbolic Algol I will be described in
the context of a model problem, TRINITY, which solves a simple set of three-
dimensional magnetohydrodynamic (3DMHD) equations on a rectangular
Eulerian mesh, using the leapfrog scheme for the dynamical terms and the Dufort-
Frankel scheme for the diffusion terms [6,9]. The basic equations are

acp Vi) --- =
at - g (Pd + “V2PK ,

3

B = V x (V x B) + TV~B
at >

aT
dt=

-v . TV + (2 - y) TV - V f uV2T

+ (y - 1) qJz/p + (y - 1) v[(V X v2 + tv ~ V)21. 051

Here pij = (pT& + V,V, + (B2/2) aij - B,B,) and J = V x B. The fluid field
variables are the mass density p, the three-component fluid velocity V, the three-
component magnetic field B, and the temperature T, (I&? in actuality). y is the ratio
of specific heats for the fluid, typically 513. The three transport coefficients v,
the electrica resistivity, v, the viscosity, and K, the thermal conductivity, will be
assumed to be constant over the entire system and independent of time. These
restrictions are not necessary for the symbolic approach. On the contrary,
symbolic approach is shown in its best light for extremely complex equations,
difference schemes, geometries, etc., because the complexities can be treated once
and then hidden from sight. Here, however, we minimize these complexities for
two reasons:

(a) For the purposes of this paper the symbohc methods are most transparent
in a simple problem. A good example should not require a great deal of spe~i~i~ed
physical understanding since the method is intended to be quite general.

90 ROBERTS AND BORIS

(b) The TRINITY program was originally designed, and has in fact been
used, for full three-dimensional MHD production runs. To keep the execution
time within reasonable bounds for a 3D run, even in a fully optimized code on the
IBM 360/91, great simplicity is required.

Difference Scheme

A Cartesian coordinate system is used with a grid spacing of 6s (constant) in
each of the three coordinate directions, with each of the eight field quantities
specified at each grid point. A fully time- and space-centered leapfrog difference
scheme is used to ensure second-order accuracy for the dynamic terms. This
explicit difference formulation, in which the 3D mesh is fully staggered in time,
is particularly well suited toward writing high-speed, optimized codes and conserves
global p, global pV, and local V . B = 0 identically.

Figure 1 shows one plane of the staggered mesh. The field quantities (p, V, B, 7’)
on the grid are thought of as specified at two different times, separated by at,
depending on whether the sum of i + j + k is “even” or “odd.” Thus the O-points
all have discretized physical variable values specified at time t, say, and the X-points
have their mesh values specified at time t + St. When 7, the timestep number,

I=NI+l

I=NI

UPPER
Jr --:mf

J-NJ J=NJ+I

FIG. 1. One plane of the staggered mesh. The physical region is a cube, containing NI x
NJ x NK cells. Because of the periodic symmetry, the three faces which may be denoted by
East, Upper and North do not have to be calculated and act as guard planes. An extra set of
guard planes is provided outside the West, Lower and South faces. The figure shows one plane
of the mesh for an even value of K, and NI = NJ = 4. Points 0 are recalculated at even steps,
and points X are recalculated at odd steps. Points <> and x are guard points, set by symmetry.

SYMBOLIC ALGOL 91

is even, only the even mesh variables 0 are advanced in time by 2St. Thus, after
this timestep in which all gradients and fluxes are computed using the time- and
space-centered X-point variables, the O-points now contain variables at t t 26~
These new values are then suitable to advance the odd points in time in a fully
time- and space-centered manner.

Since the O-points and X-points interact primarily through gradients and deriv-
atives of each other, it is natural for the meshes to decouple. In fact as explaine
in Ref. 6 (Section IIG), there are eight uncoupled meshes in three dimensions.
Except for the density, these are linked together by the Dufort-Frankel scheme
which is used for the diffusion terms.

Periodic geometry is normally used in TRINITY, although other boundary
conditions have been implemented for specific physical problems [9].

The actual Symbolic Algol I program equivalent to Eqs. (12-15) is given in the
Appendix.

3. STORAGE ALLOCATION FOR Tm VARIASLES

Field Variables

The eight dependent variables are represented on a three-dimensional, rectan-
gular, uniformly spaced finite difference mesh, with NI, NJ, NK intervals in the
three directions, respectively. In periodic geometry we write

PI = NI + 2, PJ = NJ + 2, PK=NK+2; 9116)

then the total number of storage locations required for each variable is

SIZE = PI x PJ x PK. m

The grid spacing is DS in each direction, and the three independent coordinates are

x = I x DS,

y = J x DS, WQ

z = K x DS,

where

-1 <I <NI,

-1 <J <NJ,

-1 <K<NK.

rw

92 ROBERTS AND BORIS

The active region of calculation is

O,(I,<NI--1,

O,(J<NJ-1, cm
O<K<NK--1,

and the six extra planes I = -1, NJ, (all J and K) etc. are considered to be guard
planes. These are provided so that the difference formulation can be extended
unmodified right up to the boundaries of the physical system. In the leapfrog
algorithm adopted, the entire problem has been cast as a three-level, nearest-
neighbour difference solution and thus only one level of guard planes need be
supplied.

For actual core references to the dependent field variables, a single-subscript
notation is chosen. The three-dimensional arrays are represented by a single
subscript

Q = 1 + (I + 1) + (J + 1) x PI + (K + 1) x PI x PJ, (21)

where Q is declared a global integer, representing the current center of all difference-
equation formulations. It is clear that Q has the permissible range of 1 < 0 < SIZE,
which is chosen for compatibility with Fortran.

For the vector quantities V and B, a second subscript Cl = 1,2, 3 is attached to
array storage declarations to distinguish the three vector components. Thus, for
TRINITY, the appropriate array declarations are

real array A RHO, A TEM[l : SIZE], AV, AB[l : 3, 1 : SIZE]; (22)

The letter A preceding the variable names distinguishes between actual and privi-
leged variables and has the mnemonic of “array”. Thus the continuity equation
can be written and executed as

A RHO[Q]: = RHO - DT x DIV(RH0 x V); (23)

and reads as:
“The new p at the current origin is equated to the old p minus 6t times the

divergence of p times V.”
Although Q and Cl are really array subscripts, it is more correct to view them as

pointers in the discussion of Symbolic Algol that follows. They point both to a core
location and to a physical location in the rectangular problem space. As global
pointers they get modified by the various operators and then, in turn, all quantities
which depend on these pointers have modified values when referenced.

SYMBOLIC ALGOL 93

4. PRIVILEGED VARIABLES

In Eq. (23) of the preceding section the continuity equation was written in a
symbolic notation in which the references to p (RHO) in the right- and left-hand
sides took different forms. When a new value is being inserted into A RHO[
direct reference to the actual core location is necessary. When numerical values are
merely being picked up as members of an intermediate calculation, on the other
hand, the Algol language permits a very much compressed notation through the
use of privileged variables. As explained briefly in Section 1, a privileged variable
is a parameterless typed procedure whose value, when invoked, can be controlled
by the current state of any of the variables which are declared to be global in
scope to the actual procedure definition. In the case of the TRINITY program
the main global variables concerned are the pointers Q and Cl of the previous
section.

In the example of Eq. (23), RHO, V, and possibly DT are privileged variables;
no subscript or component references appear or are necessary. The utility of
privileged variables over their closest Fortran counterparts is enormous because
of the structure of the Algol language and the restrictions of Fortran. Computa-
tional compactness such as shown by Eq. (23) cannot be rivalled by a corresponding
Fortran program because (a) there must be at least one argument, possibly a
dummy, for every Fortran function, and because (b) Fortran has no real analog
to the Algol call-by-name facility.

The first restriction reduces the possibility of program brevity and hinders
notational simplicity. As remarked earlier, the ability to achieve brevity in scientific

notation has aided the rapid development of both physics and mathematics and
thus compactness should be one of the prime goals of the symbolic style ofprogram-
ming. The second restriction of Fortran follows from a subtle but extremely
important point of programming philosophy and will be treated in the next section.

The simple privileged variables declared in TRINITY are listed below

real procedure RHO; RHO: = A RHO[Q];

real procedure TEM; TEM: = A TEM[

real procedure V; V: = A V[C1, Q];

real procedure V2; V2: = A V[C2, Q];

real procedure B; B: = A B[Cl, Q];

real procedure B2; B2: = A B[C2, Q] ;

where ‘2’ refers to the second component j in tensor expressions such as Vi Vj) pij .
Note that both V and V2 point to the same array, and similarly for B, B2.

All these definitions rely on the global variables A RHO, A TEM, A V, A

94 ROBERTS AND BORIS

Q, Cl, etc., which must therefore be preset to realistic values before any of the
above privileged variables are invoked. These variables are used in the following
way: suppose Cl = 1, and Q is defined by Eq. (21), where I, J, and K also have
preset values. Then

RHO x V

when referenced, has the value

A RHOLQI x A W, Ql,

or in a more explicitly scientific notation

We are making a distinction here between privileged variables and the more
general class of parameterless procedures. Privileged variables are typed real or
integer and generally very short and their definitions can often be written in a
single line. By contrast, other uses for parameterless procedures take explicit
advantage of the long-identifier facility of Algal, a prohibition in most Fortran
implementations. In fact, parameterless procedures can be used in a number of
ways to make Algol more concise and readable by following through one of the
basic tenets of the Algol language, that the logic should read like English and the
computation like mathematics. Thus in TRINITY, for example, parameterless
Boolean procedures are defined to carry out various checks on the current problem
state implicitly and return the value, true or false, depending on what they find out.
One of the more important examples is the Algol statement (7)

if THIS POINT IS EVEN then INVOKE DIFFERENCE EQUATIONS;

THIS POINT IS EVEN is a Boolean-type procedure, and INVOKE DIFFER-
ENCE EQUATIONS is an Algol procedure equivalent to a Fortran subroutine.
The definition of the Boolean procedure is given by Eq. (8). In passing we note that
the corresponding Fortran to statement (7) might be

IF((1 + J + K + N).EQ. 2” (I + J + K + N)/2)) CALL INDIFQ. (25)

This is superficially shorter than (7) but requires comments for documentation
while (7) does not. Further the Algol logical check may appear in many places.
Thus, in statement (7) the body of THIS POINT IS EVEN need only be changed
once in one place to modify the entire program logic.

We close this section by defining one more privileged variable. Because of its

96 ROBERTS AND BORIS

by two very short real procedures which act as clockwise and anticlockwise
rotation operators:

real procedure RP(A); real A; begin Cl: = CP[Cl];

RP: = A; Cl: = CM[Cl]; end;

real procedure RM(A); real A; begin Cl: = CM[Cl];

RM: = A; Cl: = CP[CI]; end; (29

The vector product can then be defined as

real procedure CROSS(A, B); real A,B;

CROSS: = RP(A x RP(B)) - RM(A x RM(B)); (30)

This use of short nested procedures is typical of Symbolic Algol. Note that
although side effects are used to alter the value of Cl, the original value is restored
before the procedure eventually relinquishes control; the side effect is therefore
‘reversible.’ To see how (30) works, suppose that we wish to calculate the y
component

(A x B)2 = A,B, - AIB, .

When CROSS is entered, Cl has the value 2. The first occurrence of RP causes a
clockwise rotation and generates the value Cl = 3, so extracting A,. Then a
further rotation extracts Bl . Similarly, two successive anticlockwise rotations
produce the second term in (31). Just as in ordinary vector algebra, both A and B
may themselves be complex vector expressions involving algebraic or analytic
manipulations.

Translation Operators

Mesh translations are carried out by means of a basic operator

integer procedure DQ; DQ: = if Cl = 1 then 1 else if Cl = 2 then PI else PI x PJ;

(32)

There are two vector translation operators, one being the inverse of the other;

real procedure EP(F); real F; begin Q: = Q + DQ; EP: = F; Q: = Q - DQ; end;

(33)

real procedure EM(F); real F; begin Q: = Q - DQ; EM: = F; Q: = Q + DQ; end;

These allow a vector difference operator DEL to be defined;

real procedure DEL(F); real F; DEL: = (EP(F) - EM(F))/DS2; (34)

SYMBOLIC ALGOL 97

where DS2 = 2 x DS, and then CURL can be defined in terms of DEL;

real procedure CURL(A); real A;

CURL: = RP(DEL(RP(A))) - RM(DEL(RM(A))~; (3%

Broadly speaking, there is a one-to-one correspondence between the operator
formalism available in analysis, numerical analysis and Symbolic Algal. For
example once we have defined a vector lattice translation operator in numerical
analysis:

&Lf(% Y> 4 = m + s.5 Y, -4,
etc.
then a centered difference operator 6 can be defined by

(36)

and then

6 = (I3 - E-1)/(2 . 6s) (37)

C&Ar+xA (381

Two slight differences may be mentioned; firstly we cannot take inverses for
granted in Symbolic Algol but have to define them separately, and secondly we
cannot use the vector product operator in (35) in the same way as in (38) because
the latter application is rather unusual; one of the operands of x acts on the other.

Call lay Name

This use of operators may seem unfamiliar to those versed in Fortran, since it
relies on the Algol ‘call-by-name’ facility. An elementary discussion of the facility
will therefore be given here.

Call-by-name is closely linked to the concept of a generalized formal parameter
in Algol. In general, when a parameter (or ‘argument’) is passed between modules,

what the usual compiler does is to put the address of the core location of the
parameter in a place where the called module will know to look. The called module

“knows” where to find the address of the first parameter, the second, and so on.
When the value of the parameter is needed, the contents of the appropriate core
location are picked up. Where Algol and Fortran usually differ, in effect, is in
what the contents of these pre-specified core locations mean.

In Algol the parameter is generally thought of as a reference to a function which
returns the actual value of the parameter every time the formal parameter name
is referred to by the called subroutine. The external variable, function, expression,
etc. which corresponds in the calling sequence to the formal parameter being
referenced, is reevaluated at very such reference. If the procedure (routine) being
called changes something on which the actual parameter value depends, then the
value of the parameter changes during the execution of the called procedure.

98 ROBERTS AND BORIS

The great flexibility and power of this generalization can be seen by reference
to the rotation operator RP(A) defined by (29), which clearly corresponds to an
algebraic expression of the form A * = RAR-I. This very simple procedure only
works because of call-by-name. In (29), A is a formal real (by name) parameter
which is assumed to be a vector, depending on the globally declared component
index Cl. Thus RP evaluates A for a cyclically shifted component index, and then
restores that index to the value it had on entry.

Suppose R is involved elsewhere in the program in the following way:

REAL VARIABLE: = RP(V);

where V is the privileged velocity variable. The Algol compiler constructs code
whose essential actions are as follows:

(a) A function reference is constructed which returns the value V: =
AV[Cl, Q] whenever the argument function is referenced.

(b) This function reference is put in a place where RP “knows” to “look”
for it.

(c) Control is passed to RP which immediately “looks” at the prespecified
function reference and equates this reference to its internal dummy function A.

(d) The current value of Cl is rotated to CP[Cl] = Cl + 1 (modulo 3).
This has the effect of moving the component pointer Cl cyclically from x to y,
y to z, or from z to x.

(e) The return value of RP is set equal to A which is evaluated through the
external referencing to V = AV[Cl, Q] w h ere Cl is now the ww value of the
component pointer.

(f) The value of Cl is restored to its original value, Cl: = CM[Cl]; before
exiting from the procedure.

(g) The program control is returned to the calling program which assigns
the return value of RP to the real variable (or to any other expression in which
RP is used).

On the surface this sequence of calculations and actions seems very simple and
natural but the distinction from Fortran must be pointed out again. The important
points of difference occur in steps (c) and (e). In step (e), the parameter reference
is not resolved during construction of the calling sequence. The external variable,
function, expression, conditional expression, or whatever, is not evaluated by Algol
until precisely that time when the formal parameter is actually referenced within
the called procedure. If A in the above example were referenced several times with
Cl and Q being changed between references, each usage would bring a different
value for the argument into the procedure.

SYMBOLIC ALGOL 99

An important feature of call-by-name as used in TRINITY is the “reversible
side effect.” In the example given above, Cl was rotated cyclically, a side
effect, and then was reset to the value it had on entry after the required value of
the formal argument A had been evaluated. These reversible side effects allow
all of the vector algebra and difference formulae to be evaluated behind the scenes,
Other controlled side effects of typical procedures are used in Symbolic Algol
for generating code.

Scalar product

Another of the TRINITY operators will now be given to illustrate the method
further. In its most symbolic form, the scalar product can be implemented as:

real procedure DOT (A, B); real A, B; DOT: = SIGMA (A x

where in three dimensions:

real procedure SIGMA (F); SIGMA: = F + RP(F) $

These formulae correspond to the algebraic expression

The dot product can however be written in another form which is less symbolic
but which will execute much faster than the form (39). This other form (42) is
computationally equivalent to (39) but removes several of the expensive calling
sequences :

real procedure DOT (A, B); real A, B;

begin real SUM;

Cl: = CP[Cl]; SUM: = A x B; @a

Cl: = CP[Cl]; SUM:=SUM+-AxB;

Cl: = CP[Cl]; DOT: =SUM+AxB;

Whatever the initial value of Cl, three rotations span the entire range and bring
it back to its initial value. Many of the operators can be speeded up in this wax7
without changing the physical statements at the highest level.

100 ROBERTS AND BORIS

6. OPTIMIZATION OF SYMBOLIC PROGRAMS

Direct calculations using the fully symbolic versions of TRINITY are not very
fast; the computer CPU is not used efficiently, in general, when multiple nesting of
calling sequences is necessary, and a great fraction of the actual calculation is
redundant. The only solution to this problem, for large 3D calculations, seems to
be optimization of the inner loops of the symbolic code, by one method or another.

Various levels of hand coding are possible and most of these have actually
been implemented, giving identical results on several computers:

(a) Fully Symbolic Form (Algal). All operators and variables are treated
symbolically. Each operator, in general, consists of a single line definition. Thus,
for example, DOT in (39) is defined in terms of the summation operator SIGMA.
This is the slowest method of all, and can be extended almost arbitrarily far.
Initial and boundary conditions can be treated symbolically, for instance.

(b) Optimized Symbolic Form (Algal). This approach is considerably faster
but otherwise very little different from (a): the two methods differ only in the
operator definitions. Rotation and displacement operators are not used but
otherwise form (b) is obtained from form (a) by substituting the DOT operator
(42) for (39) say.

(c) Optimized Algal Form. Here the basic outlines of the symbolic program
are retained; the data structure, the initial conditions, the boundary conditions,
etc. Direct substitutions for all of the operators in the difference equations greatly
increase program efficiency but increase the time needed to check out the program.
A great saving of execution time is achieved by using the optimized code for
production.

(d) Standard Fortran Form. Here the program is basically as in (c) above
but the Fortran compiler is used. On the IBM 360/91 the H-level (OPT = 2)
compiler generates exceedingly tight code, as compared to the IBM Algol compiler,
and either Fortran or assembly language should eventually be used for the inner
loops where a large number of long runs are being contemplated.

(e) Optimized Fortran Form. When all possible tricks are employed, such
as storing momentum and magnetic flux quantities to save recalculation, and using
a singly subscripted notation to optimize on register usuage, a factor of two or
three more can be obtained. On the IBM 360/91 a 40 x 40 x 20 grid can then be
executed on a production basis at about 2.5 sets/step or about 1400 steps/hr.
Almost all production work so far done with TRINITY has been with codes of
this type.

(f) Optimized Assembly Language. This is the fastest version, running with

SYMBOLIC ALGOL 101.

100 % efficiency, and can be obtained by hand coding version (e). Not more than
a factor 2 improvement on (e) can however be expected, at least on the IBM 360/91,
because the H-level compiler for Fortran is so good, but since the conversion is
comparatively straightforward it would probably be worthwhile.

Automatic Optimization

Clearly an automated optimization facility is to be preferred over direct hand
optimization of the symbolic program. An approach suggested by the authors f2,3]
results from the observation that the symbolic version (a) already contains enough
information to generate an optimized version of itself. The privileged variables
RHO, V, B, T can be modified in such a way that they print or punch their own
names as side effects, while the operators such as CURL, CROSS manipulate t
values of Cl and Q which are needed in subscript expressions or index register
settings. Clearly the arithmetic operators +, -, x , / and the assignment symbol
: = cannot perform this type of action, but they can be converted either by hand or
automatically to the Symbolic Algol II form, in which expressions such as

A + B, A: = B

become

SUM@, W, EQUATE(A, B),

respectively. Then these procedures can be made to perform any desired action.
Dr. M. Petravic and Dr. G. Kuo-Petravic have succeeded in generating optimized

versions of TRINITY in Algol, Fortran, ICL KDF9 Usercode and IBM 360
assembly language from the same Symbolic Algol II difference scheme, by suitable
choice of the lower-level procedures [4]. They have also taken the obvious next
step by writing a macro-preprocessor to allow the notation of the symbolic program
to be even closer to mathematics [5]. One serious deficiency of Algol, for instance,
is the lack of a facility permitting user definition of infix operators. This preproces-
sor therefore converts the statement

DB/DT = CURL(V < X > B) + ETA x DELSQ(B) (W

into the Symbolic Algol II statement (11) or alternatively, it will convert (4) into
(10

The Symbolic Algol II optimization program is itself highly modular, and it can
be used for a wide range of problems. Besides generating any necessary linkages
and control statements, it can also carry out a certain amount of physical optimi-
zation; for example if informed that ajay and a/az are zero, it will avoid generating

102 ROBERTS AND BORIS

any expressions in which these occur as products, together with any redundant
operators, so that

is replaced simply by

a + d;rfiaY) + c (46)

a + c. (47)

This enables three-dimensional vector expressions such as Eq. (43) to be used for
one- or two-dimensional problems, as is normal in mathematical physics.

Broadly speaking, the quality of the code which can be generated in this way is
about the same as that of the Fortran hand version (d). It would be difficult to
take account of the physical symmetry of the problem automatically, by storing
fluxes for subsequent re-use, but this slight loss of efficiency is balanced by the
improved efficiency of assembly language as compared to Fortran. A further
optimization which could be carried out in a straightforward way would be the
elimination of common sub-expressions; for example the combination of constants
e2/&c might be replaced by a single constant 01, while terms such as a - a could
simply be removed.

7. CONCLUDING REMARKS

A symbolic style of Algol programming has been developed for application to
the solution of coupled systems of partial differential equations. The various
aspects of this method for generating intelligible, concise, accurate, efficient and
portable programs have been illustrated in this paper, using a simple three-
dimensional problem as an example. This program, called TRINITY, uses an
explicit leapfrog difference scheme, centered both in space and time, to advance
the variables V, B, p, and T = P/p. A rectangular Cartesian mesh is used. The
method however seems capable of generalization to any type of difference scheme,
explicit or implicit, Lagrangian or Eulerian, rectangular or curvilinear.

In the symbolic method of using Algol, vector-valued functions can be repre-
sented by single coordinate-free symbols, with positional and vector indices
suppressed. Thus, using essentially classical vector-, tensor-, and differential-
calculus notations, numerical algorithms for the solution of partial differential
equations can be prescribed with a fraction of the effort needed for writing a
computer program in a more standard programming style. As an added benefit,
of course, the chance for programming errors to occur is very much reduced. This
symbolic style of Algol has now been used on several computer systems in the
USA, UK, and Germany.

Symbolic Algol permits the details of the vector and numerical analysis to be

SYMBOLIC ALGOL 103

built into a hierarchy of compact operators which can be defined in an extremely
general manner. The clarity, flexibility, and generality which one obtains by this
method have one compensating drawback; the symbolic codes run very much more
slowly than their optimized counterparts. Optimization of one form or another,
as discussed in Section 6, will almost certainly be required for 3D runs of any
realistic and interesting scope.

A typical 3D programi-:ing job therefore proceeds as follows:

(a) A ‘prototype’ code, containing all of the necessary physics and numerical
analysis but running very slowly, is written in Symbolic Algol I. Progr~mi~
errors are not easy to make and those that do occur can usually be found very
quickly. Much of the work czn be carried out on-line, taking advantage of a rapid
turnround for short jobs.

(b) Because the running time for a 3D explicit code goes roughly as the
inverse fourth power of the mesh spacing, a series of test problems of increasing
size can be run, with the final space mesh only about two or three times coarser
than that needed for the full production runs. These test runs serve as reference
cases for optimized versions of the codes.

(c) The prototype code is reduced to a computationally equivalent but
highly optimized form to permit efficient production rum, either by hand or
automatically. Only the inner loops need be processed in this way.

(d) When completed, the fast production version is put through the same
series of test runs as for the prototype, and comparison with these reference tests
is made. This gives a positive check on the accuracy of the final code and enables
any errors to be tracked down and eliminated quickly.

A proper application of this technique results in a well-structured, modular
code in which the statements are either expressed in clear English-language control
statements, or by mathematical expressions such as Eq. (43). A family of such codes
will be presented elsewhere [l]. TRINITY is currently being adapted to run on a.
60 x 60 x 60 mesh on the IBM 360/91, using two IBM 2301 drums on separate
channels to store the 2 million physical variables 173. As foreshadowed in Refs. 8
and 9 it seems that such large 3D calculations are now quite practicable, and
Symbolic Algol appears to be a suitable language in which to formulate them.

APPENDIX. THE TRINITY DIFFERENCE EQUATIONS

The Symbolic Algol I difference equations are in virtual one-to-one correspond-
ence with the partial differential equations of Section 2:

104 ROBERTS AND BORIS

procedure INVOKE DIFFERENCE EQUATIONS;
begin

CONTINUITY EQUATION: DT: = 2 x DELTA T; Cl : = C2: = 1:
Q: = 1 + I + 1 + (J + 1) x PI + (K + 1) x PI x PJ;
NEW RHO: = RHO - DT x DIV(RH0 x V);
MOMENTUM EQUATION: DT: = 2 x DELTA T/(1 + NU/EPS)

for Cl: = 1,2, 3 do
AV[CI, Q]: = (RHO x V + DT x (-DIV2(P)

+ NU x DELSQ(RH0 x V)))/NEW RHO;
A RHO[Q]: = NEW RHO;

MAGNETIC EQUATION: DT: = 2 x DELTA T/(1 + ETA/EPS);
for Cl: = 1,2,3 do
AB[Cl, Q]: = B + DT x (CURL(CROSS(V, B))

+ ETA x DELSQ(B));
TEMPERATURE EQUATION:

DT: = 2 x DELTA T/(1 + KAPPA/EPS); Cl : = 1;
ATEM[Q]: = TEM + DT x (-DIV(TEM x V) + KAPPA

x DELSQ(TEM) + (2 - GAMMA) x SAV(TEM)
x DIV(V) + (GAMMA - 1) x (ETA
x SQM(CURL(B))/SAV(RHO) + NU

x (SQWCUWV)) + DIW) t 2)));
end; (Al)

The adjustment to DT is a device which enables the Dufort-Frankel scheme to
be used, without altering the form of the differential equation, and EPS = E =
6s2/66t. Those operators which are not yet defined are fairly obvious (note that P
is given by Eq. (26)):

real procedure DQ2;
DQ2: = if C2 = 1 then 1 else if C2 = 2 then PI else PI x PJ;

real procedure DEL(F); real F; DEL: = (EP(F) - EM(F))/DS2;
real procedure DEL2(F); real F; DEL2: = (EP2(F) - EM2(F))/DS2;
real proredure DELSQ(F); real F; DELSQ: = (SAV(F) - F) x 6/DSSQ;
real procedure DlV(A); real A; DIV: = SIGMA(DEL(A));
real procedure DIV2(T); real T; DIV2: = SIGMA2(DEL2(T));
real procedure EM2(F); real F; begin Q: = Q - DQ2; EM2: = F;

Q: = Q f DQ2; end;
real procedure EP2(F); real F; begin Q: = Q + DQ2; EP2: = F;

Q: = Q - DQ2; end;
real procedure SAV(F); real F; SAV: = SIGMA2(SUM2(F))/6;
real procedure SQM(A); real A; SQM: = SIGMA(A x A);
real procedure SUM2(F); real F; SUM2: = EPS(F) + EM2(F); (A21

SYMBOLIC ALGOL

where

DS2: = 2 x DS; DSSQ: = DS x DS;

The label ‘2’ refers to the second indexj, so that the correspondence is

DEL(F)
aF
-&;

DEL2(F) g

jiT..
DIV2(T) 2 ti

j 3

SAV(F)

105

(JW

SAV is used to produce a space average over six surrounding mesh points, without
disturbing the index i.

Finally, we note that Cl and C2 should be set to some legal value in the range l-3
before evaluating the continuity and temperature equations, because they are left
undefined by Algol when used in for loops. Conventionally the value 1 is chosen.

REFERENCES

1. R. S. PECKOVER AND K. V. ROBERTS, Symbolic Algol modules for the explicit solution of
coupled partial differential equations, in preparation.

2. K. V. ROBERTS, Methods of computational physics, in “Proceedings of Culham Conference on
Computational Physics,” July 1969, Report CLM-CP (1969), paper A, Her Majesty’s Stationary
Office, London.

3. K. V. ROBERTS AND 5. P. Boars, Trinity programs for 3D magnetohydrodynamics, in ““Proceed-
ings of Culham Conference on Computational Physics,” July 1969, Report CLM-CP (t969)1),
paper 44, H.M.S.O., London.

4. M. PETRAVIC, 6. KUO-PETRAVIC, AND K. V. ROBERTS, The automatic optimization of Symbolic
Algol programs. I. General Principles, to be published.

5. G. KUO-PETRAVIC, M. PETJUVIC, AND K. V. ROBERTS, The Translation of Symbolic Algoi E
to Symbolic Algol II by the STAGE 2 macro-processor, Culham Laboratory Preprint CLM-
PUO, in preparation.

6. K. V. ROBERTS AND D. E. POTTER, Magnetohydrodynamic calculations, Methods Cornput.
Phys. 9 (1970), 339.

7. G. KUO-FETRAVIC, M. PETRAVIC, AND K. V. ROBERTS, The optimization of magnetohydro-
dynamic calculations in 3 dimensions, to be published.

8. J. P. Bows AND K. V. ROBERTS, The optimization of particle calculations in 2 and 3 dimensions,
2. Cumput. Phys. 4 (1969), 552.

9. J. P. BORIS, High-/3 stability in a three-dimensional diffuse pinch, in “1970 Sherwood Theoretical
Conference,” April 1970, Princeton University, Princeton, New Jersey, in preparation

